IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1975

A microprocessor-based input/output system for
an interactive computer

Wayne Elmer Jones
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Electrical and Flectronics Commons

Recommended Citation

Jones, Wayne Elmer, "A microprocessor-based input/output system for an interactive computer " (1975). Retrospective Theses and
Dissertations. 5484.
https://lib.dr.iastate.edu/rtd /5484

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/5484?utm_source=lib.dr.iastate.edu%2Frtd%2F5484&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

' INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document

have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1. The sign or ‘““target’” for pages apparently lacking from the document
photographed is “Missing Page(s)”. if it was possible to obtain the missing
page(s) or secticn, they ars spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
“sgctioning” the material. it is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is

" continued again — beginning below the first row and continuing on until
complete.

4, The majority of users indicate that the textual content is of greatest valus,
however, a somewhat higher quality reproduction could be made from
“photographs” if essential to the understanding of the dissertation. Silver
prints of “photegraphs” may be crdered at additional chargs by writing

the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

5.PLEASE NOTE: Some pages may have indistinct print. Fiimed as
received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48108

S

76-1849

JONES, Wayne Elmer, 1948-
A MICROPROCESSOR-BASED INPUT/QUTPUT |
SYSTEM FOR AN INTERACTIVE COMPUTER.

Iowa State University, Ph.D., 1975
Engineering, electrical

H
}
!
9

i

- Xerox University Microfilms, ann arbor, Michigan 48106

e armes T e ke e . - . . . E

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

A microprocessor-based input/output

systea for an interactive computer
by

Wayne Elmer Jones

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Approved:

Signature was redacted for privacy.
In Charge of MajorYork
Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Grafiuate College

Iowa State University
Ames, Iowa

1975

ii

TABLE OF CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
PROBLEN DEFINITION
SYSTEM EVALUATION CRITERIA
SYSTEH FUNCTION DEFINITIONWN
PROCESSOR FUNCTION ASSIGNMENTS
I/0 SUBSYSTEN COMMUNICATION REQUIREMENTS
CLASSES OF TERMINAL TYPES SUPPORTED
Class 1
Class 2
Class 3
Class 4
DETAILED PROCESSOR DESCRIPTIONS
Terminal Controller
Channel Controller

control Interpreter

-4

/0 Supervisor
Code Converter
I/0 Memory

CONCLUSICNS

ACKNOWLEDGEMENTS

LITERATURE CITED

Page

1
13
16
21
28
38
38

42

42
44
4y
47

49

1
59
60

70

A

RELATED LITERATURE

. APPENDIX

iii

74
76

INTRODUCTION

The earliest computers consisted of a terminal and a
processor, When a programmer wished to run a program, he
loaded his program and data, ran the program, made any needed
changes, and reran the program. The final two steps were
repeated until the program operated correctly. This
technique was excellent in terms of programmer efficiency
becausa results were availabhle very rapidly,

However, several disadvantages were preseat in this type
of confignration. The computer was idle while the programmer
vas making changes. Every programmer was required to learn
the intricacies of operating the compnter; Every programmer
had to come to a centralizad location since there was usually
only one terminal.

To correct some of these inadequacies, batch processing
vas developed. The programmer novw submitted his program to
some type of operations staff which ran the program on the

sachine and returnsd the program and any output to the

utilization of the computer and removed the burden of
physically operating the computer from the programmer.
fiowever, elapsed time for a run increased causing programmer
etficiency to suffar., The programmer often had forgotten the

pattern of thought that led him to make certain changes

before the results of those changes could be returned t> hinm.

In an effort to speed the response time and increase
efficiencf, a modification GZ batch processing called
multiprogramming vas developed. This allowed multiple
programs to run on the same machine simultanéously. This
process was accomplished by letting each program run for a
fixed interval of time and swapping programs at the end of
every such time slice. This concept decreased the elapsed
time but did not provide a significant impravement over the
standard batch processing technique because there were still
too many people involved in the intermediate tasks.

The next technigque developed was called ramcte job
entry. In this mode the programmer entered his prograi from
a remote terminal and the results were returned to him either
from a centralized output device or possibly from an output
device at the remote job entry point. This technique did not
provide muéh improvement over the earlier batch procassing
rethods because the elapsed time was not significantly

dacraased.

lnnnns‘-ea‘ &qul- b oa e v vem
VYyYyoorou [ER1Y- " VHE UDOSL LSV AVE

cr

As an alternative it vas s
a real-time response to his actions at a remote location.
This technique is the basis of the interactive time-shared
systea. The system appears to interact with many users
simultaneously by rapidly commutating the system's facilities

among these users, each 9f whom is on-line at a remote

terninal[1,2].

A definition of a real-time response is now required if
the systea is to Se adequately specified, A real-time
response implies that the user receives a response td his
activity wvhile the reasons for an operation are still fresh
in his mind. Delays greater than four seconds can b2
tolerated if they occur when a major break occars in the
user's thought pattern. Delays greater than twd seconds
should be avyoided if the task reguires a high level of
concentration. The response speed needs to be proportional —
to the amount of detail involved in the operation.
0perationé like keystrokes and cursor movements should appear
instantaneous to the user. However, care aust be eie:cised
to see that rapid response doés not push the userf{3,4 3.

The implementation of an interactive time-shared
computer has been the goal of saveral efforts. The sriginal
interactive systems were of a centralized design. The

percentage of time the processor was doing useful work for

cr
or

@ user was typically very ssall. The processor spent most

L]

(o]

£ its tise doing DOOKKeeping tasks, program editing
functions, time slicing activities and termin;l control
functions. The block diagram of a central processor
configuration is shown in figure 1.

A similar situation arose in systems with a preprocessor

type of configuration[5). The preprocessor was used to

manipulate the data stream and thus simplify the I,/O0 handling
requirements for the main processor. The preprocessor
typically removed part of the overhead from the main unit,
but usually not a significant amount. The block diagram of 2a
preprocessor configuration is shown in figure 2.

Another solution wvas the SYMBOL system with its
distributed architecture and hardware control sequence(b].
This technique alloved the central processor to perform only
userst wvork, However, the implementation of the control
functions in hardvare made the machine very difficult to
service or to adapt to new equipment. A seconi problem vas
that the terminal interface requirements could be met only
with a specializad and expensive type of terminal. A final
problem was the relatively primitive level of communication
between the SYMBOL system and the terminal. The block

diagram of the SYMBOL system is shown in figure 3.

eeemm———
r————|Terminal 0}

> omw o= o -

Memory

r"'l

o gy

r-—|Terminal 1}

Fra e T [T =
-4 -t -t
o < ©
= (<] e
ol ol [} ® [ol
=] & =
H] [)
@ @ @
& 7] -
e = = o o wn wss ol r'l—l
— R Gy S =y 1""-'L “
- e > e 1"-"""""'!"!—
!
|
|
t
!
|
|
"l'l"'."l"
b
-~ O
« W
oW
P @
[~ t)
o o
v &
[-%
e s S o S > - T o o

| I ——

|
-

|
L

Central Processor Configuration

1.

Fig.

>

-
|

— =y

r—————{Termainal 0

po Suv wen ome o

Memory

ke o e www o

1

1

eraina

r
[

r—IT
|

W e MEP e WES? WRe G aEe GEe @ue v

> oue W= ane W)

Y
{

Preprocessor |-———-———j{Trerainal 2§
i
-

e m———————1
! 3
Lew——-—{|Terainal nj

L—{Terminal 3}
[T |

®

®
oI e E_——Y

|
[&
|

po cuin e sam WD -

ﬁ""'.'l‘"il.'l-ll

b s ons can e e

1"""""'.

Central
Processor

| I OURERE SR - |

Preprocessor Configuration

Pig. 2.

8 1 | 1
| l | |
| Systen i | Interface |
{ Supervisor | | Processor |
| | | |
| N J 1 b |
| |
| {
J
|
|
'
{ r —
i I } XCVR O |
—————y		———		
			I XCVR 1	
	M			—————
	e		f XCVR 2	
1	m		Channel e	
=———1 0	=1 { XCVR 3			
	r	{ Controller	——eeeemem—]	
i Yy {	{ b {			
				.
el		.		
	= -]			
l	XCVR n			
' []				
h				
i				
L				
b				
i				
L 3 B				
i i				
Remainder i				
] of Systenm				
!				

Fig. 3.

SYMBOL System Configuration

r) J
1 |
r————|Terainal 0|
l {
b ==] |

i
|
—|Terninal 1|
|
2

|
I
|
|
(
!
| |
|
|
i
|
-

r |
[‘ |
..... —{Terainal 2j
i |

L -d

J

r-———‘d

R —jTerainal 3

o o een =
lp e

-

|
|
i
|
|
i ®
|
i
¢
{
|
Lee——|Terainal n|

REVIEW OF LITERATURE

Nearly all previous work invdlving I/0 structures in
interactive systems has involved the use of a general purpose
computer with software control. The MULTICS system 3t the
Nassachusetts Institute of Technology is one example., It is
implemented entirely in software on a General Electric 645
computer system{7,8]. One major fault of this systea is a
restriction on the type of terminals that can be supported,
i.e., MULTICS supports only the IBM Model 2741 and the
Teletype Model 37,

A second interactive system is THOR[9]. This system is
implemented in software and utilizes a video display
terminal. However, a special keyboard is required at the
terainal to generate the control characters required by the
system, During editing operations a portion of the user's
text is displayed at the terminal. The user may edit the
displayed text or rTegquest that a nevw portion of his text be
displayed. The systea alsd supports Teletypes, but the

control and editing procedures are less general and more

difficult to use than thos

»

.-

for the video terminals.

Another interactive system is TALK[10]. It is
implemented on a CDC 1700 computer. The systea is capable of
supporting Teletype devices and card reader/line printer

pairs as I/0 devices. However, on-line editing facilities

are not provided.

An evaluation of commercially available interactive
systems was undertaken by Ford Motor Company in 1970{ 11].
All of the systems utilized a software approach to I/O
handling., Each system was evaluated in terms of command
language and editing facilities., The uéer interface was
defined as the major problgn for nearly all of the evaluated
systems.

A major thrust in the area of interactive computing has
been the development of text editoers. One system, QEBD, 2t
the Oniversity of California in Berkeley is designed to
support Teletypes and typeuritérs in a variety of editing
operations[12]. Character editing operations are provided
for intraline editing after the selected line has been
accessed.

An editing system at Brandeis University is line
oriented, No character editing is provided(13]. This system
provides support for Teletypes and typewriters.

An editing system implemented by Bourne utilizes a set

- b
8hc

rf

of codes for intraliine editing{i4j. & means Keep the cur

character and # means deiete the current character. Otae

o]

editing functions are supported on a line basis.

WYLBUR is the Stanford University Computation Center's
editing system{15]s It is a large and powerful software
system with only one major restriction. It supports only the

IBM Model 2741 and Teletype Model 33 terminals. The system

10

does not contain provision for many of the functions of 2a
video display, e.g., cursor movement.

The SYMBOL system represents a differeat approach to an
interactive system[16,17,18,19,20,21]. Each processor within
the system is utilized for a specific function and nearly all
of the control is implemented in hardware. This systenm
provides adequate support only for the SYMBOL terminal.
Software can be used to support other I/0 devices although

nct very efficiently.

1
PROBLEM DEFINITION

All of the previously described interactive systems are
limited in the typs of terminals that they are capable of
supporting. Only one of the systems utilizes a video display
and that display unit is special because of keyboard
requirements.

In an effort to alleviate this problem, the research
described in this disseration involves the jetaramination of
the type of I/O structure required to support many types of
terminals in an interactive environment. Tnis work includes
the specification of command and editing functions for a
variety of terminal types and the evaluation of various
implementation methods for both control functions and data
paths, Serviceahility and understandability are also factors
in such an evaluation because of the high cost of updating
the I/0 structure to support new terminals as they are
introduced.

A principal eamphasis of this work has been the
development of an I/0 subsystea which optimizes performance
with interactive teraminals; i.e.

vhere average data rates

are lov and control functions are complex. W®Hhere the maximum
data rate is an important factor, e.g., a2 bulk storage
device, the subsystea does not represent the optimum I/0

structure.

12

The availability of microprocessors adds a nev dimension
to this work, If a microprocessor with supporting hardware
can be utilized as a special purpose processor in a lafge
computer system without impairing performance, both
serviceability and understandability of the system are
improved. With an element, i.e., the microprocessor, common
to many of the special purpose processors in the systen,
knowledge concerning any one of the special processors is an

aid in understanding the operation of the others.

13

SYSTEM EVALUATION CRITERIA

Using information from existing systeams, a set of

criteria has been developed to evaluate the input-output

section of interactive computers. Such a system should:

1.

2.

3.

Se

6.

7.

8.

Interface directly to any asynchronous
terminal type with a serial channel of up to
9600 baud including those terminals consisting
of an interface and multiple devices.

Perfora code conversion between the terminal
character set and the system character set.
Provide on-line editing facilities for any
type of compatible terminal without
unreasonible time delays for the usar.
Provide terainal control functions as
required, e.g.,, carriage return, clear; line
feed.

Provide detection and decoding facilities for
system coamrmands, e.g., run, initiate, ioad.
Require minimal control from the rest of the
coaputer systea.

Be interruptible so that it may be used with
time slicing or virtual memory systesms.
Provide a means of "pushing a program down"

on a terminal so that a supervisory program

14

can be run on the same terminal and tha
"pushed down" program later completed.

9. Be simple to facilitate understandihg and
serviceability.

10. Include enough flexibility to handle new
types of terminals as they are developad.

11. Be capable of being initialized without

complex set-up procedures.

Th2 flexibility requirement virtually eliminates the
idea of hardvare control saquences except in cases where
there is little likelihood of change, e.g., buffer
manipulation.

The criteria of rapid response, code convarsion, and

simple initialization preclude the use of pure software sinca

execution time increases when software is used as the driver.

The software must also be reloaded at initialization if a
systen failure caused the control program to be modified.
solution is to use a combination of software and hardware
the form of read-only memory containing control code
sequences for the processors.

The serviceability criteria reqaires that the systenm
simple. However, the response speed requirement dictates
that the system may need t> respond to one terminal while

is handling another. On2 way that both of these criteria

in

be

it

can

be reasonably satisfied is with a distributed architecture.

15

With the concept of distributed architecture comes a new
problem. Because each processor is constructed to perform a
specific function, there may be little resemblance between it
and the other processors in the system. Thus, serviceability
must still be considered. A viable compromise would be to
construct each processor from a standard part, e.g., a
microprocessor, and surround it with the supporting hardware
necessary to perform the required function. Each processor
could then have a common element, but coild still be

customized to perform a specific task.

16
SYSTENM FUNCTION DEFINITION

Combining a distributed architecture in the I/O section
with the preprocessor configuration of figure 3 rasults in an
I/0 subsystem capable of operating between a namber of
terminal types and a main computer system. Such a
configuration is shown in figure 4.

With this organization, the main computer need not
possess any knowledge concerning the terminal being utilized.
When the main computer requires I/0, the I/O subsystem is
informed and the main computer proceeds to other work. Using
the terminal identification provided by the main computar
with the I/0 request, the I/0 subsystem accesses the proper
terminal, executes the I/0 task, and informs the main
computer at the time the task is completed or suspenied.

This method of interconnection has two significant
advantages., The main computer is involved in the I/0 task
only to the eitent that it informs the I/0 subsystem wha2n an
I/0 task is pending and receives the I/0 subsystem shutiown

information wvhen the task is halted. This allows the main

computer tn perform other work wvhile I/0 is in preocess on 2
terminal without time slicing activities. A sacond advantage
is that the I/0 subsystem can be utilized with any main
computer system capable of supplying the necessary control
information., Minor modifications will be required in the I/0

subsystem to interface it with different types of main

17

computer systems. These modifications will be in the I/0
subsystem/main computer interface, i.e., the control signals,
the memory access signals, and possibly a data conversion if
character sets differ.

The SYMBOL computer was utilized as a vehicle for
further investigation of the I/0 subsystem because SYMBOL's
hardvare I/0 structure is a possible candidate for
replacement by the subsysteam. Availability of the SYNBOL
system and general knowledge of tha SYMBOL I/0 structure were
also important considerations. The detailed descriptions
included in the remainder of this paper are defined in terss
that are applicable for the I/0 subsystem as it would be
utilized with the SYMBOL computer. However, the concepts
described have a much broader application.

L

To aid in tha tis I/0 sibsystes, a

[
33
[$]
™
rdg

definition of the functions regquired of the subsystem is

needed. sSuch a description follows:

1. Terminal control function, e.g.. generating
carriage returns at the end of a line of text
if the terminal dossa't, controliing data
rates to prevent data loss, and synchronizing
the terninal's asynchronous information to
allov the system to manipulate it.

2. Code conversion, i.e., the transforration

between the symbolic code used by the terainal

3.

4.

Se.

6.

7.

8.

9.

18

and the symbolic code used by the systam if
they are not identical.

Control coasand detection, i.e., systea
comnands and editing commands must be detaected
in the data strean.

Buffer manipulation, i.e., some type of
buffer mechanisa must be provided to smooth
the d;ta flov to the terminal and yet not
piesent an excessive load to ths systsem.

Data transfer, i.e., information must be
moved between the terminals and their
respective buffers. Information must also be
moved between the buffers and main memory.
I/0 subsystem control, i.e., the total data
path must be monitored to assure that
transfers are accomplished as efficiently and
rapidly as possible,

Control conmand interpretation, i.e., systea
commands and editing commandis must be
interpretei to determine the proper response,
Separate control coamand channel, i.e., 2
discrete channel for control commands must be
provided to allow system coamands to be

received during output.

Bditing coamand execution, i.e., the raceipt

10.

11.

12.

19

of an editing command may na2cessitate an
immediate update of the terminal display.
System command transmission, i.e., the rest
of the system must be informed of the receipt
of a system command.

Character echoing, i.e., the system must
transmit any characters that are to be
displayed back to the terminal because the
system is interposed between the entry devics
and the display at the terminal in the fall
duplex mode of operation. Half duplex does
not allow enough flexibility for an
interactive systen.

Pushdown operation, i.e., a supervisory
routine can be run on a terminal and then
return control to a user program in progress

on the same terminal.

20

- — e -— s e o

—
|
|
!
[]

1

|
L
v
|

r—|Terainal

r~——=—|Terainal 0
-——=—————|Terainal 2

7
S ——
!
|

FT T

170
Subsystenm

Memory

b oo - -

Main
Computer
Systenm

I/0 Subsysteam Configuration

Fig. 4.

21
PROCESSOR FUNCTION ASSIGMNMENTS

Accepting a distributed architecture as optimum leaves
the problem of deciding whare each of the previously defined
functions should be performed.

The terminal control functions must be performei on 2a
dedicated basis if they are to be adequate. If an effort is
made to perform such tasks on a time-shared basis the
compiexity rises markedly. For example, it is necessary to
prevent transmission of a new character frum the terminal
before the previous one has been handled. Howaver, if such
control is time-shared, high speeds and careful design are
required to ascertain that every terminal is checked for such
an overwrite condition. An individual terminal control for
each terminal is more straightforward and allows control to
be tailored for the terminal desired. Becase a variety of
terminal types is to be supported, the first application of a
microprograsmed microprocessor becomes apparent. Standard
hardware and a variety of control sequences for a variety of
terminals effectively solves the problem. The name Terminal
Controller has been chosen to describe this element in the
architecture. One will be required for each terminal
connected to the systenm.

The code transformation should take place in the
Terminal Controller. Since needless complexity can be

avoided if the rest of the system handles only one character

22

set, the code transformation must be done as close ta the
terminal as possible, i.e., in the Terminal Controller. An
added advantage is that the Terminal Controller already
requires an identification of the terminal type to determine
the control requirements and this same identification can be
used to control the code transformation.

Handling of control comamands is the next function to be
considered. These commands require detection at an early
stage in the incoming data stream so that they may bz routed
separately. Because every character undergoes a code
transformation, the control commands can be detected at the
same time by deriving additional information from the code
transformation. This information can then be used t> control
the routing of the control commands.

A final task that can be performed in the Terminzl
Contrcller is the job of echoing characters back to the
terminal, If the character is not a part of a control
cormand, it will need to be echoed and the most rapid
response is obtained by doing the job in the Terminal
Controliler, CcControl commands may or may not need to be
echoed and must be handled in a more complex manner,

The buffer concept and the requirement thit the control
conmand channel be separat2 dictate that thare aust be three
buffer areas for each terminal. Two, A and B, will be

utilized as data buffers. A third, C, will be utilized acs a

23

holding area for control commands. This can b2 accomplished
by locking out any new control commands until the previous
one has been interpreted. This is not an unreasonable
pfocedure because the user will need to know the result of
the previous control command before another is entered.

The data transfers between the Terminal Controllers and
their respective buffers will be handled by the Channel
Controller. The Channel Controller will scan the Terminal
controllers and transfer characters between the Terminal
controllers and the appropriate buffers as required to keep
the terminals and the system operating, It will utilize the
information provided by the Terminal Controllers concerning
control commands to initiate transfers to the T buffer.

To most effectively utilize the main memory, the data
transfers between the buffers and the main memory will be
performed on a burst basis to lessen the loading on the main
memory. The processor which does this is called the
Interface Processor.

The logical lecation

"

or editing command execution is

(o d
&
(0]
H
o3
(44
]
r
th
<]
Q
1]
g
[a]
Q
Q
[
4]
(4]
[¢]
re
L
to

ecau

n

¢ it manages transfers
betwveen the buffers and virtual memory, it has access td> a
copy of the information available to the user. This
information is ncseded during editing tasks so that the
information presented at the terminal may be updated

correctly.

24

The interpretation of control commands is a simple task
if each coamand is transmitted from the terminal as a unigue
code. However, this is clamsy because the keystrokes
required will typically have little in common with the
operation requested, If multiple keystrokes are perﬁitted to
construct a control command, another problem arises.
Expétienced users may be capable of using an abbreviat¢d set
of keystrokes vhile a new user may want to use very explicit
coamands to accomplish the same function. This implies that
a variety of commands, e.g., =L$, sLOAD$¥, and "Control" I,
may need to be converted to the same code for use within the
system[22]. ¢ represents the end of a message.

To aliow enough flexibility and still not cause
unnecessary duplication of hardware, such a conversion ~an b2
accoanplished after the control command is placad in the C
buffer. Thus, only a single processor, the Control
Interpreter, is needed to handle all the terminals in the
system. The only restriction is thét the same sequence can
not have different meanings for different tarepinals, This
restriction applies only after the ceocde traansformation is
completed.,

The I/0 Supervisor is required to control the operations
of the other processors in the system., Its tasks include:

1. Coammunicating with all the processors in the
I/0 subsystem to provide operating

instructions.

25

2, Ascertaining when a processor in the I/0
subsystem is done with its assigned task so
that buffers and terminals may be reassigned
to provide more work for that processor if any
is available.

3. Communicating with the rest of the system to
see vhat I/0 tasks are ready to be performed.

4. Informing the rest of the system of syétem
cosrands that have been received and
interpreted.

The I/0 Supervisor also has a responsibility to see that
no information is lost when a program is made inactive on a
terminal so that a supervisory routine may be executed. It
must transfer all pertinent information to a safe location in
the main memory. Then, upon request of the supervissry
routine, the I/0 Supervisor must restore the terminal to its
original status by retrieving the data from the main memory
and continuing the original operation.

The cods tramnsformation éroblen can be handled by an
array of read-only memories, each programmed fir a specfic
type of device, The memory will be time~shared. among the
Terminal Controllers and thus will be able to scan
Controliers at a rate equivalent to the cycle time of the

memory array.

26

The input-output memory will be of the read/write
variety and will contain the three buffers and a set of
control words for each terminal. These control words will
contain the information needed for the system to perfora I/C
tasks on the terminal.

A read-only memory containing control sequences will be
attached to each processor. Provision for newv terminals as
they are introduced will require expansion of the control
memery to provide additicnral contrecl segquencas. The
Interface Processor and the Control Interpreter will require
the most control memory modification if additional teraminal
types are supported. The Terminal Controller will require
ainor modifications and a new code transformation table will
need to be added if the teraminal's character sat is
different.

The block diagram of the I/O subsystem is shown in

figure S.

27

FemTTTmTETETY

r—=| TC 0 |——|Terminal 0|

re===="3

|
b

R |
|
|
|
|
i

1

r
{
{--iTerminal

™
-] TC 1

{
|
{
)

L o o s o o

A
. |
Terainal 2|

.
|

re———==
-] TC 2 |—]

I/0
amory

| TR

|

|

i

!

|
ress=TT

<

| NE———

|-—|Terainal 3{

3

1/0

[T~

[————

re————= | .
t——| IC n |—|(Terainal
i
[-

b3

Computer
sSysten

I/0 Subsystem Block Diagram

S.

Fig.

28

I/0 SUBSYSTEH COMMUNICATION REQUIREMENTS

To provide a communication path between the various

processors, a tventy-seven line control bus will be required.

This bus is allocated as follows:

1.

2.

3.

b,

Se

Five lines for the terminal number. These
will be used to specify a termiral number for
the various start and stop signals transmitted
by the I/0 Supervisor.

One line for the Terminal Controller start
signal (TCSTRT) from tha I/0 Supervisor. This
line in combination with the terminal number
lines will start the selected Terminal
Controller.

One line for the Terminal Controllar qgumit
signal {(TCQUIT) from the I/0 Supervisor. Th:s
line in combination with the terminal number
lines will stop the selected Terminal

cnttoller,

(g

Gﬁé.line for the Interface Processor start
signal (IPSTRT) frex the I/C Supervisor., This
line in combination with the terminal number
lines vill start the Interface Processor on
the selected terminal's task.

One line for the Interface Processor quit

7.

8.

9.

29

signal (IPQUIT) from the I/0 Supervisor. This
line will cause the Interface Processor to
shut down, i.e., to suspend work on tha
current task.

Three lines for the Interface Processor to
transmit shutdown information to the I/0
Supetrvisor.

One line for the Channel Cortroller start
signal (CCGO) from the I/O0 Supervisor. This
line will cause the Channel Controller to
begin scanaing the Terminal Controllers.

One line for the Channel Controller quit
signal (CCQUIT) £from the I/O Supervisor. This
line will cause the Channel Controller to stop
scanning the Terainal Controllers.

Eight lines for the Channel Controller to
transait shutdown information to the I/0
Supervisor. Three lines will be used to

W
tll

rn
7}

©

type © hiutdown and £ive lines

)]

efin

£
o®

ed t Smit the ter@minal numbecr,

=
Bl

a

u
cr
(o]
)

€ u

er

1
&

[32

<
&

A CCGO signal will be required from the I/0
Supervisor after a shutdown before the Channel

Controiler will resume scanning the Terminal

controllers.

10. One line for the Control Interpreter start

30

signal (CISTRT) froam the I/O Supervisor. This
line in combination with the terminal number
lines will start the Control Interpretar on
the selected terminal's task.

11. One line for the Control Ianterpreter qnit'
signal (CIQUIT) from the I/O Supervisor. This
line will cause the Control Interpreter to
shut down.

12, Three lines for the Contreol Interpreter to
transmit shutdown information to the I/0O

Supervisor.

Because all of these lines are driven by only one
output, the bus will not require wired=-OR connections. An
advantage to this bus configuration is that most of the
processors need to monitor only selected lines 9f the bus and
need not be concerned with the other lines. The only
deceding required will be done by the I/0 Supscrvisor to
process shiitdown information.

The shutdown information for the Channel Zontroller will
be transmitted to the I/0 Supervisor as one of tha fallowing
codes, A terminal nuaber, which is transmitted with the
shutdown information, provides the terminal idantification to

the I/0 Supervisor.

CCBFE This shutdown signals the I/O Supervisor that

CCEOR

CcccCcC

31

the Channel Controller has stopped scanning
because it has completed the processing
required on the specified terminal and is
ready for more work on that terminal. This
shutdown also signals the I/O Supervisor that
a bufter is empty during an editing task.

This shutdown signals the I/O0 Sup2rvisor that
the Channel Controller has stopped scanning
because it has completed the processing
required on the specified terminal. Execution
vas stopped because an "end of record”
character was encountered during processing.
This shutdown alsd signals the I/0 Supervisor
that an editing task has been completed and
the system is ready for more input from the
specified terminal.

This shutdown signals the I/0 Supervisor that

the Channel Controller has encountered the end

-kl

terminal.

CCSTAT This shutdown signals the I/O Supervisor that

the Channsl Controller has stopped scanning
because it has completed a status update on

the specified terminal.

32

CCERR This shutdown signals the I/0 Supervisor that
the Channel Controller has stopped scanning
because it has detected an error on the |
specified terminal. An error coda2 and the
location of the error have been stored in the
I/0 Memory to facilitate diagnosis. |

CCTCQT This sbutdoun signals the I/O0 Supervisor that
the Channel Controller has stopped scanning
because it has detected that the Terminal
Controller on the specified terminal has shat
down in response to a TCQUIT signal.

CCQT This shutdovn signals the I/0 Supervisor that
the Channel Controller has stopped scanning in
response to a quit signal from the I/D
Supervisor., The terminal nurber is ignored
vhen this shutdovn is received by the I/O

Supervisor.

The shutdown information for the Interface Processsr
will be transmitted to the I/0 Supervisor as one of the

foiiowing codes:

IPBFE This shutdown signals the I/0 Supervisor that
the Interface Processor has completed the
processing required on its assigned job and is

ready for more work. This shutdown also

33

signals the I/0 Supervisor that a buffer is
full during an editing task.

IPEOR This shutdown signals the I/0 Supervisor that
the Interface Processor has completed the
processing reguired on its assigned job and is
ready for more work. Execution was stopped
because an "end of record® character was
encountered during processing. This shutdown
also siqgnals the I/0 Supervisor that an
editing task has bheen completed and the system
is ready for more input from the terainal as

. socn as a CCEOR shutdown is received froam the
Channel Controller for the terminal of
interest.,

IPPO This shutdown signals the I/0 Supervisor that
the Interface Processor is shutting down
because it has encountered a page fault in the
main memory and may be reassigned until the

nsedad page is availa

cr

la.

1]

]

IPERR This suutdown signal

/1]
o

u

we I/0 Supervisor that
the Interface Processor is shutting down
because it has detected an error condition.

Ra error code and the location of the error
have been stored in the I/0 Memory to

facilitate diagnosis.

34

IPQT This shutdown signals the I/0 Supervisor that
the Interface Processor is shutting down in
response to a quit signal from the I/0

Supervisor.

The shutdown information for the Control Interpreter
will be transmitted to the I/O Supervisor as one of the

folloving codes:

CIED This shutdown signals thke I/0 Supervisor that
the Control Interpreter has completed the
processing required on its assigned job and
has detected an editing command.

CIsC This shutdown signals the I/0 Supsrvisor that
the Control Interpreter has completed the
processing required on its assigned job and
has detected a system command.

CIERR This shutdown signals the I/0 Supervisor that
the Control Interpreter is shutting down
because it has detected an error condition.

fi 8ITOr Code and the location of the error

have been stored in the I/0 Memory to
facilitate diagnosis.

CIQT This shutdown signals the I/0 Supervisor that
the Control Interpreter is shutting down in
response to a quit signal from the I/)

Supervisor.

35

The communication path between the I/0 Supervisor and

the rest of the computer system requires eight lines.foc

information and five lines fcr the terminal number.

allocation is as follows:

1.

2.

3.

4.

one line for the I/0 subsystem start signal
(IOSTRT) from the coamputer system. This line
in combination with the terminal number lines
will instruct the I/0 Supervisor to initiate
processing on the selected terminal'’s task.
One line for the I/0 subsystem quit signal
(I0QUIT) from the computer system. This lins
in combination with the terminal number lines
vill instruct the I/0 Supervisor to halt
processing on the selected terminal's task.
One line for the I/0 subsystem save signal
(IOSAVE) from the computer system. This line
in combination with ¢he terminal number lines
will instruct the I/0 Supervisor to halt
processing on the selected terminal's task an
store status information for the terainal in
the main memory to allow restoration of the
terminal®'s status at a later time,

One line for the I/0 subsystem restore signal
(IOREST) from the computer system. This line

in combination with the terainal number lines

The

d

36

vill instruct [/0 Supervisor to retrieve the
status information for the selected ternminal
from the main memory and resume processing on
the selected terainal's task.,

S. Four lines for the I/0 Supervisor to transmit
shutdowr information to the computer systenm.
These lines in combination with the terminal
number lines will specify the type of shutdown
generated for a particular teraiaal.

6. Five lines for the terminal number. These
lines will be used to specify a terminal

number for the communication path.

All of the absve lines must be conditioned to meet the
logic level requirements of the computer system. Provision
must be made in the I/0 Supervisor to generate any status
signals that may be required by the computer system during
these information exchanges.

The shutdown information for the I/O subsystem will be
transmitted to the computer system as one of the following
codes., A terminal number is transmitted with the shutdown

information to provide terminal identification to the

computer systea.

IONOR The I/0 task assigned by the computer system
on the specified terminal has been completed

satisfactorily.

37

IOERR The I/0 task assigned by the computer systeam

1020

I0QT

IoscC

on the specified terminal has been terminated
because of an error. An error code and the
locaticn of the error have been stored in the
main memory to facilitate diagnosis.

The I/0 task assigned by the computer system
on the specified terminal has generated a page
fault in the main memory. Processing will be
suspended as soon as the buffer capacity is
exceeded.

The I/0 task assigned by the computer systenm
on the specified terminal has been terminated
in response 40 a quit signal from the computer
systen.

A system command has heen detected by the I/0
subsystem on the specified terminal and has
been stored in tha main memory pending further

action by the computer systea.

38
CLASSES OF TERMINAL TYPES SUPPORTED

The proposed I/O subsystem can support four broad

classes of terminal types:

Class 1

Class 1 is composed of devices such as card readers and
line printers, Although these types of devices do-ndt lend
themselves to interactive operation, they are still important
to the user who desires to manipuliate lacrjs data bloCks on an
interactive system without long I/0 periods as would be
required for keyboard entry or typewriter output. Status
display is not provided for Class 1 terminals because there
is no reasonable place for the presentation of such
information., The system will support the us2 of simple
editing and system commands. These will need to be proviieil
as an input to the system where they will be iaterpretedi as
control commands and routed accordingly. The system conmands

which vwill be supported are:

sINIT# Initiate activity on the teraminal.

sCLEAR% Clear th2 terminal's work area.

=«LOAD% Lcad a program into the terminal's work area,
=RUN$ Run the program 1n the terminal's work area.
sCANOUT% Cancel the current output task on tha tarminal.
sPAUSE$ Halt processing on the terminalt's work.
sCONTIN# Continue processing on the terminal's work.
sFnt Initiate a special function call for terminal.
«TERM#$ Terminate activity on the tarminal,

where 'm* represents any integer between 0 and 15. These

commands are all express2l in the long form. A short form

39

consisting of a one or two letter sequence will also he
supported., The third form that will be supportel is a single
character representation,‘e.g., a maltipunch will symbolize a
LOAD command.

The system will support editing for Class 1 terainals
only on a line basis. Each line is considered an autonomous
unit, A line may be a fixad number of charactars or may be
delimited by a carriage return. This decision is a function
of a flag sat by two of the editing coumands as defined

below. The line edi*ting commands which will ba supportad

are:
aCR% A line will be delimited by a carriage return.
sl=n4 A line will be considered as 'n*' characters.
e+n$ Move the pointer forward *n' limes,
s-n% Move the pointer backward *n' lines.
aDLn# Delete 'n' lines following the pointar,
=Dn4$ Display 'n' lines following tha pointer.

sSFXXXX¥$ Searzh forward for txxxx'.

eSBxxxx# Search backward for f*xxxx'.

a0V$ Enter ovarwrite mode.

aIN%$ Enter insert mode.,
vhere ®*x*® rTepresants any character other than ‘e® or %% and
'n' represents any integer between 0 and 999. The
alphanumeric field for ssarch operations may b2 up to eight
characters in length. Tae alphanumeric field following =IN%
vill be padded with blanks on the right to corcespond t3 a
fixed line length if a line is defined as a fixed number of
characters, If sIN$% is not used, an overwrite will be

performed. The 'insert® mode is exited whenevar an editing

command is encountared in the data stream from the tarminal.

40

If 'n* is 0 the system will interprst *n* as "to the
beginning"™ or "to the end.®™ If *n*' is omitted the systan

will assign *n' a value of 1,

Class 2

Class 2 is composed of devices such as typewritars and
Teletypes. Although mor2 convenient than a Class 1 device
for interactive activity, the Class 2 device's slower
operating speed is a hindrance to optimum interactive
performance.

In addition to the system commands for Class 1 devices,
Class 2 terminals provide the user with the terminal's status
upon request. Enta2ring «STAT# at the terminal will cause tha
system to respond with th2 terminal's current status in the
system, An exampl2 o>f a single character reprasentation for
Class 2 devices is "Control" X for a LOAD command.

The system will support editing commands for Class 2
terminals on a line or character basis. A lins will be
defined as for Class 1 da2vices. The line eiliting coamands
will be identical to those for Class 1 terzinals. To allow
the use of character editing, the system will responi to any
line editing request by displaying the lin2 selected by the
current pointer position., The pointer will be positioned at
the first character of the line,

To initiate the character editing mode th2 user will

enter oCH$, The character editing commands which will be

41

supported are:

s+tn¥ Move pointar forward 'n' charactsrs.
s=-n¥ Move pcintar backward ‘n' characters.
«DLn¥ Delete 'n*' characters following the pointer.
sDn§ Display 'n' characters following the pointer.

w SFxxxx# Search fcrward for *'xxxx'.

s SBXxxx ¥ Search backward for *'xxxx'.

sOV§ Enter overwrite mods,

sIN¥ Enter irnsert mode.
vhere 'x' represants any character other than 's' or '#' and
'n* represents any integar between 0 and 999. The
alphanumeric field for search operations may b2 up to eight
characters in length., If the alphanumeric field following
oIN$# causes the line to exceed the maximum lenjth allowable,
the system will Jenerate a new line and pad it with blanks as
necessary. If «IN$ is not used, an overwrite will b2
performed., The 'insert' mode is exited whenavar an editing
command is encountered in the data stream from the terminmal.
It 'n' is C the system wjll intarpret 'n' as "top the
beginning™ or "to the end.® 1If 'n' is omitted the systae
will assign 'n' a value of 1,

To return to the line editing mode the user will enter
sLN¥. The system will respond by displaying the lins

selected by the current pointer position. The pointer will

be positioned at the first character of the line.

Class 3
Class 3 is composed of devices with a video display.

These devices comprise the most usaful type for interactive

42

operation because of their high speads and convenient
display. Most video terainals have some type of cursor to
inform the user where the next character will appear on the
screen.

Class 3 terminals utilize the same system command set as
Class 2 devices, However, the extra keys on many Class 3
devices provide a concise method of generating systea
commands from one keystroke[23,24,25].

The system will support editing commands £or Class 3
terminals in the same maner2r as utilized for Class 2 devices.

The following single keystrokes will also be supported:

L Fove cursor left one character,
-» Move cursor right one character.
4 Move cursor up one line,
Move cursor down on2 line.
‘HONE' Move cursor to upper left corner of 1isplay.

'DELLINE®' Delete line select2l by cursor.

'DELCHAR' Delete character selectad by cursor.

"INSLINE* Insert line at cursor location.

"INSCHAR' 1Insert character at cursor location,

If the user moves the cursor to a location containing
information and dces not select "INSCHAR' or 'INSLINE', an

overwrite will be performed.

Class &

Class 4 is composed of a terminal interface and a number
of I/0 devices. If the I/0 request specifies that the
default device be used, the terminal interface must provide a
default device identification when requested by the Terminal

Controller to permit proper handling cf data by the 1/0

43

subsystem. If the I/0 request contains a specific device
number, the I/0 subsystes car be configured without
interrogation of the terminal interface. In this way any of
the preceding terminal classes can be used in coambination
vith a terminal interface to construct a more complex

termiral.

44
DETAILED PROCESSOR DESCRIPTIORS

Terminal Controller |

Each Teraminal Controller will consist, in part, of a
microprocessor driven by a read-only control meadry. T>
supplement the microprocessor, five high speed registers will

be required with the following characteristics:

IIREG A twelve bit register to store data produced
by the code conversion daring INPUT.

IOBREG A twelve bit register to store data ready for
the Channal Controller during INPUT.

OIREG An eight bit register to store data
transaitted from the Channel Controller during
OUTPUT.

OOREG A twelve bit ragister to store data produced
by the code conversion during OUTPOUT.

THMNID An eight bit register containing the terminal

type identification.

The microprocessor utilized in the Terminal Controller

is required to process one character every millisecond i

[}

the
terminal is operating at 9600 baud. A four bit
microprocessor with a 2 microsecond instruction cycle time is
adequate for this mode of operation., Available
microprocessors having this type of specification include the

Intel 4040, Because the Aata registers are tvelve bits in

45

many cases, the width of the data path through the
microprocessor is not critical.

The data registers are necessary to buffer data since
different portions of the subsystem operate at different
rates. The low order eight bits in the data ragisters will
be used to represent the data vith the remainder teserved as
indicators for escape symbols, carriage returns, and control
conzands.

A counter will be maintained in ths Terzinal Coatrcller
to determine‘if a carriage return should be inserted since
the end of the lin2 has been reached at the terminal. Since
specd is not essential for this operation, the counter can b2
kept in one of the microprocessor's registers., If the
counter is equal to zero, the Terminal Controller will
generate a carriage return for the subsystem and for the
terminal in addition to its normal work.

A number 6f flags will be required to indicate that the
registers are valid, that characters should be echoed, that a
‘e?® has been received from the terminmal, that the terminal is
in an 1/0 mode, that control commands can be accepted, and
that the terminal is active. These may be either within the
microprocessor or axternal depending on the capabilities of
the microprocessor utilized.

Another element in the Terminal Controller is a buffer

register for storing data as it is generated by the terainal.

46

This is necessary because under certain conditions some
terminals continue to produce data after they have been
instructed to stop sending information. This data would be
lost if buffering was not provided., FEach Terminal Controller
will also contain the hardware necessary for asynchronous
serial 1,0, i.e., 2 OUniversal Asynchronous Receiver
Transmitter or UART., A frequency divider will be required to
generate a variety of baud rates. The proper baud rate will
be determined by the contents of the TMMID register.

The Terminal Controller will be connected to the control
bus to monitor the TCSTRT, TCQUIT, and terminal numb2r lines,
In the event that a TCQUIT is received from the I/0
Supervisor, the Terminal Controller will instruct the
terminal to stop sending information. After waiting
sufficient time to insure that the terminal has stopped
transmitting data, the Terminal Controller will transmit the
information needed to restart itself to the Channel
Controlier with instructions to store the information in the

al

(g}

Terni

=]

ontroller's control word. When this task is

com

©

ieted, a CCTCQT will be sSent to the I/0 Supervisor by the
Channel Controller. When a TCSTRT signal is received by the
Terminal Controller, the Chanrel Controller will retrieve the
information stored in the Terminal Controlier®s control word
ard transait it to the Terminal Controller so that the job

may be started or resumed as the case may be.

47

The organization of the Terminal Controller is shown in

figure 9.

Channel cController

The Channel Controller will consist, in part, of a
microprocessor drivean by a read-only control memory. To
supplement the microprocessor, two high speed registers will

be reguired with the following characteristics:

CC¥RD A sixty-four bit register tc store the
Chanrel Controller's control word for the
selected terminal,

CCDATA An eight bit resgister to hold the data being
transferred between the Caannel Controller and

the I/0 memory.

The microprocessor utilized in the Channel Controller
will have a minimum of 35 microseconds to process each
character. An eight bit microprocesser with a 1 micresecend
instruction cycle tise cai provide this data rate if care is
exercised in the control program. 3itce it is very unlikely
that all 32 terminals will be operating at 9600 baud
simultaneously for extended periods of time, a aicroprocessor
with a 2 microsecond instruction cycle time is adequate for
this application most of the time. Available aicroprocessors
having this type of specification include the Intel 8080, A

faster microprocessor would allow more latitude in control

48

program construction and permit the Channel Controller to
handle the worst case data rate without slowiny the I/0
subsysten.

The control word for the Channel Controller will contain
the location of the next characte; position in the I/O memory
and information describing the selected terminal's task.
After each data transfér the control word is updated and
vritten back into the I/0 memory.

The Channel Controller will communicate with the
Terminal Controllers over the Channel Control bus. This bas
will consist of twelve bidirectional data lines, five address
lines for selecting the appropriate Terminal Controller, a
line activated by the selected Teraminal Controller to
indicate that a transfer can be accohplished, and a control
line from the Channel Controller to enable the selected
Terminal Controller®s registers.

The selection of the Terminal Controller will be handled

by a scanner implemented in hardware. Each Terminal

(@)
O
t3
r
s
O
[
P
144
2]
%
e
-
[
wr
(]
b
23
c*
[+
2]
L)
(<]
Vel
[
*
o
f
c*
L]
e
Q0
o
[M
‘-
4
[
p+]
(V3]
[
»
Q
&
1]
Q
»
o3
Q
]
Q
[
[0
-

cuce for the INRPUT mcde and once for the OUTPUT mode.
Whenever the Channel Controller transmits a shutdown
code to the I/O0 Supervisor, the I/0 Supervisor must respond
with a CCGO signal before the Channel Controller will resume
scanning the Terminal Controllers. This method is needed to

prevent a second Channel Controller shutdown while the first

49

is being processed by the I/0 Supervisor.

The organization of the Channel Controller is shown in

figure 10.

Control Interpretecr

The Control Interpreter will consist, in paft, of a
microprocessor driven by a read-only control memory. To
supplement the microprocessor, two high speed registers will

be required with the following characteristics:

CIRRD A sixty-four bit register to store the
Control Interpreter's control word for the
selaected terminal. The terminal type
identification will be stored in this control
word.

CIDATA A sixty~-four bit register to store the

portion of the C buffer being procassed.

The microprocessor utilized in the Control Interpreter
has no data rate problems. However, since the subsystenm
should respond to a control request rapidly, an eight bit
unit with a 2 microsecond instruction cycle time is required.
Available microprocessors having this type of specification
include the Intel 8080. A four bit micropracessor is an
alternative, but the search time for a table sntry would

increase.

50

The Control Interpreter will also require a read-only
menory containing a table of the supported control commands
for each type of terminal. There will be sufficient space in
the Control Interpreter control word to store the interpreted
version of the control commands for use by the I/0
Supervisor.

The organization of the Control Interpreter is shown in

figure 11,

Interface Processor

The Interface Processor will consist, in part, of a
microprocessor driven by a read-only control memory. To
supplement the microprocessor, nine high speed registers will

be required with the following characteristics:

IPDATA A sixty-four bit register for temporary
storage of data being transferred to or froa
the buffers in the I/0 memory.

IPDATB A sixty-four bit register for teamporary

A
L5

rh

data besing transfercred to ¢ froa

0
o0
ct

rage o

&

-1 {Y)

Bl
ri

wain

cr
[\

Fe

BUFADD A sixteen bit register containing the current
buffer location in the I/0 memory.

TANID An eight bit register containing the terminal
type identification.

DPSTRT A thirty-two bit register containing the

51

start location for the terminal display.

DPEND A thirty~-two bit register containing the end
location for the terminal display.

LNSTRT A thirty-two bit register containing the
start location for the current lina within the
displaye.

LNENDC A thirty-two bit register containing the end
location for the current line within the
display.

PNTADD A thirty-two bit register containing the

current pointer location.

The microprocessor utilized in the Interface Prgcessor
vill have a minimum of 2 milliseconds to handle a 64
character buffer. Providing this data rate while performing
the necessary processing requires an instruction cycle time
of 100 nanoseconds or less since a significant portion of ¢the
2 milliseconds may be consumed by a page fault in the main
memory. Available microprocessors having this type of
specification include the Intel 3000 series.

The standard I,/0 functions involve transfa2rring data
between IPDATA and IPDATB while updating the address
registers as required. Tha editing functions rejuire more
conplex processing. In an effort to standardize this
processing, a set of editing functions has been defined for

the Interface Processor:

1.

2.

3.

4.

5.

6.

7.

52

Move the pointer forward 'n' characters or to
the end of the current line if fewer than *n¢
characters follow the current pointer position
in the line.

Move the pointer forward to the beginning of
the following line and then forward for 'a!
lines or t> the end of the string if fever
than *n* lines follow the current line.

Move the pointer forward to the beginning cof
the following line and then forward for 'n*
characters or to the end of the line if there
are fewer than 'n' characters in the line.
Search forvard for a specified pattern or to
the end of the current line if the pattern
does not occur following the current pointer
position in the line.

Search forward for a specified pattern or to
the end of the string if the pattern does not
occur following the current poimter position
in the string.

Move the pointer backward *n' characters or
to the beginning of the current line if fewer
than "n¥ characters precede the current
pointer position in the line.

Move the pointer backward to the beginning of

8.

10.

1.

12.

13.

14.

53

the current line and then backward for *n?
lines or to the beginning of the string if
fever than 'n' lines precede the curreat line.
Move the pointer backward to the beginning of
the preceding line and then forward for *'n*
characters or to the end of the line if there
are fewer than 'n' characters in the line.,
Seérch backward for a specified pattern or to
the beginning of the current line if the
pattern dces not occur preceding the current
pointer position in the line.

Search backward for a specified pattern or to
the beginning of the string if the pattern
does not occur preceding the current pointer
position in the string.

Insert the incoming data into the existing
string at the current pointer position.
Overwrite the existing string with the
incoming data bsginning at the currsat pointer
position.

Delete 'n' characters following the current
pointer position or to the end of the line if
fewer than *n® characters follow the curremnt
pointer position in the line.

Delete the current line and 'n*' following

15.

16.

S4

lines or the remainder of the striny if fewer
than *n' lines fsllov the current line.
Display 'n' characters following the current
pointer position or to the end of the line if
fever than *n' characters follow the current
fointer position.

Display the current line and *n' following
lines or the remainder of the string if fewer

than 'n' lines folleov the current line.

Utilization of these standard functions decreases the size

of the control memcry because each terminal type's control

program can novw be written as a series of linkages to these

standard functions.

The organization of the Interface Processor is shown in

figure 12.

1/9_3ypervisor

The I/0 Supérvisor will consist, in part, of a

2

driven by a read-only control memory. To

@icroprocessor, five high speed registers will

be required with the following characteristics:

IODATA A sixty-four bit register for temporary

storage of control words as they are being

updated and for data transfers during 'save!

and *'restore' operations.

55

IOADD A sixteen bit register containing the
location being processed in the I/J Memory
during *save' and ‘restore' operations.

SAVADD A thirty-two bit register containing the
location in the main memory for ‘'save' and
‘restore' operations.

CNBREG A fourteen bit.register for temporary storage
of shutdown information from the other
precesssrs in the I/0 subsystes.

COMREG A thirteen bit register for use in

communicating with the main computer systen.

The microprocessor utilized in the I/O Supervisor must
respond to processor shutdowns with significant processing
tasks of its own. An instruction cycle time of 2
microseconds is required to perform the work in a reasonable
length of time. Long delays in the I/O Supervisor decresase
the time available tc the Channel Controller and the
Interface Processor for the performance of their tasks.
Available microprocessors having this type of specification
incliude the Intel 8080.

The control saquence required for the I/0 Supervisor can
best be expressed by a flow table for each of the general I/0
processes. When the I/0 Supervisor receives an I/0 request,
the I/0 state for the specified terminal is set to 0 and

processing is begun.

56

If the I/0 request is for INPUT, the flow table in
figure 6 is utilized. The specified Terminal Zontroller is
started and the Channel Controller begins to fill the A
buffer. CCF is used in the flow table to indicate that the
Channel Controller is filling the buffer. Because the B
buffer is empty, E is entered in the flow tabla., When the A
buffer is full, the Channel Controller stops scanning and
transmits a CCBFE shutdown to the I/0 Supervissr. The I/0
Supervisor sets the I/0 state to 1, adds the tarminal t5 the
Interface Processor queue to transfer the a‘buffer to the
main memory, assigns the B buffer to the Chann2l Controller

for the specified teraminal, and transaits a CCGO to the

I/0 BUFFER BUO PFER SHUTDOWNS
STATE A B CCBFE CCEOR IPBFE IPEOR
0 CCF E 1 6 X X
1 IPU CCP 2 7 3 X
2 Iry F X X % X
3 E CCF 4 8 X X
4 CCF IPU 5 9 0 X

(S
)
-
o
<
Lo
]
=)}
»”

6 IP0 E X X X QUIiT
7 IPU F 4 x 8
8 E IPO x X X QUIT
9 P IPU X X 6 X

Pig. 6. INPOT Flow Table

57

Channel Controller. This is denoted in the flow table by

IPU for the A buffer and CCF for the B buffer. F in a buffer
column indicates that the specified buffer is full. An 'x'
in the shutdown portion of the table indicates that the
specfied shutdown can not occur.

If the I/0 request is for OUTPUT, the flow table in
figure 7 is utilized. Two new symbols appear in this flow
table: IPF meaning the Interface Processor is filling the
buffer; and CCU meaning the Channel Controller is

transferring data out of the buffer.

I/0 BUFFER BU FFER SHUTDOWKS
STATE A B IPBFE IPEOR CCBFE CZEOR
0 IPF E 1 7 X X
1 CCu IPP 3 8 2 b
2 E IPF 4 6 X 4
3 ccu F x x 6 x
4 Ipr? CcCo 5 S 0 X
5 F CcCu x X 1 X
6 E - CCO X X X QUIT
7 CCU E x x)4 QUIT
8 cco F x x 6 X
9 P CcCo b 4 b 4 7 X

Fig. 7. OUTPUT or EDITING Flow Table

58

The third type of I/0 processing involves control
cormand interpretation and editing command execution.
Control command interpretation is handled usiny the flow
table in fiqure 8. A nevw symbol appears in this flow table;
CIu neaningithe Control Interpreter is operating on the C
buffer. When the C buffer is filled for a terminal, the
Channel Controller's control word is modified to prevent the
A and B buffers from being filled again since the buffers may
be required for oditing command execution. ®han the Control
Interpreter shutdown is CISC the Channel Controller is again
allowed to £ill the A and B buffers., When the Control
Interpreter shutdown is CIED a check is perforaed to verify
that the terminal mode is INPUT and that the I/0 state is
less than 6. If these conditions are met, the A and B
buffers are emptied and the editing coamand is executed using

the flow table in figure 7.

CONTROL BOFPER SHUTDOWRS
STATE C CCCC CIED CISC IPEOR
A CCF B b 4 'S X

o
(g]
=
(=]
»
0
o=
»

Fig. 8., CONTROL Flow Table

59

To maintain information on what types of work are ready
to be performed three queues will be used in the I/0
Supervisor[26]. The I/0 queue will contain all terminals in
I/0 modes. The IP queue will contain all terminals needing
service by the Interface Processcr. The CI guaue will
contain all terminals needing service by the Control
Interpreter. Whenever the Interface Procaéssor or the Control
Interpreter completes a task, the I/0 Supervisor looks in tha
appropriate quecue te find a different task.

Another responsibility of the I/0 Supervisor is analysis
of available information to determine the terminal type
identification and updating of the subsystea coatrol words t>
refiect that information[27].

The organization of the I/0 Supervisor is shown in

figure 13.
Code_Converter

The Code Converter consists of an array of read-only

memory programmed to provide the necessary code conversion.
Each terminal type will require 512 words of twelve bits.

mL a
1€ TOu& CO

iVETSion will be controlied by a scanner whicih
will look at the code converter registers in each Terminal
controller and see if a transformation can be executed. If
possible, the array will be accessed by the scanner using the
data in the Terminal Controller's OIREG or huffer register as

an address and the returned data stored in the Terminal

60

Controller's OOREG or IIREG. In this manner the code
conversion can be performei very rapidly because the
microprocessor in the Terminal Controller is not involved.

The organization of the Code Converter is shown in

figure 14.

1/0_Nemory

The I/0 Memory will be orqﬁnized in wvords of 8
characters or 64 bits. IE the threa low order bits 5f an
address are all zeroes, the memory will consider the address
to refer to a word and read or write 64 bits of information.
If the three low order bits of an address are not all zeroes,
the memory will consider the address to refer. _to a character
and read-or write only 8 bits of information. The memory
will consider only the eight low order lines of the data path
to be significant in this case.

The organization of the I/0O Meamory is shown in figure
15,

61

= -
o aQ &
+ 0 & a)
un 4 €
Qo [|
QPN o d>bo |
L N -N. -] w0 o e - cmm @ o=
00g O0Ow [
Cﬁw!n CFWD —
2 o - —
|]
- ey — amw - - e s ane Gee =
i 1 r 1 N 1
i v | L) l i |
| () ! ! 3] | l~ |
[« - - s - ane — [- 4 - D s WET G Ee CED R WS e SR b cor cun o
~ - C _
H o ! (=]
r|"L r'l.l
- j'll"'."l 2 13
Q @ (]
~ . 1 < 0 » 0
@ o~ 4 |_ [T)] (Y]
g M e - [42] LN] Q >
< &] o 2 nes o e
£ 2 o <O 0O
(8] o i |
= i 1 {
- e e oy Q. | “ |
| i o = | i
[] (4] “ [%] @ —!lpo.ll'-l PP mas EN cuw mE
i 3] (3] +)
i o« | o w4 - 2] { (=] t Gt
o | = @ i = | - @
- I ® > L = _ @ 4
2]] oo = LR
o [| e o ot o W o o - o 00 [=] I 44 ol o o
m { ovuva { | a
! » b o o m o
-t i x
O'I'I'l‘l'l‘"‘ -
- > o cws ans o
t "'J
= — - - e e W= gy
(] RS wmp WS P wmy SED ame D WO WS mu W (4] oy
o r # =3 TN
-— | & o
VORP HO~ ko X L [~
1) o o4 — R wme GNP (s M) e eme TS eme U =
e e T e GED WP e T G CHR o S WA TSR —!ll..lll.lt- %.u
- A/
B
e — o - o

Terminal Controller Block Diagram

Fig. 9.

62

r———=TC0

pr wom S e "uS e Y

©
o

e~

Contro

e e e e o o

- ™~ (] -4 "3
(S (8 O L (8]
nn.. nn_. & [] 1 2]
i
L
P oo S wwe TEP wme T -
-4
o
7]
0
(13
(3]
coup amw o
1
[« 1)
o}
4
(8}
wd
=
e S e T e S e o
]
1
ﬂall.ull‘ - -
{
—l.l iiii
LLEEQ

0
S]
B
!
|
i

Le—e——-TC31

——m————r

Terminal
Controller
Scanner

m
4

Contro

Channel Controller Block Diagram

10.

Fig.

63

HoaQe~o @mox

b o o > P v o— = . T e O -]

]
(o}
= 1]
g g
O
rd oo o] T ey e T e T aa T n —
: 1
& (o]
1= [
(=} (3}
18] ved
=
e e o > com @ ol et o g S o -

|

P D CMHP TED g WIS e G- SR RS g IR Gue S e S s -

i i

u !

i

O=Ean ||“ O Qe
o]]
- = L] =

Control Bus

Control Interpreter Block Diagram

11.

Fiq.

64

Control ROM

r'.vl'lL

P“__‘
| |

1/0

———] BUPADD |———-

MEM

| S—

S D I TED GNP G WEn YO Ty
- SR N RN

|

i S ame W P s S e S

» IS eEn P N anp SEr g YED gy

- Qo Ea=a

(=" ="="7
-1
i

(o W-TR7 N - L “

e v o = T e a que = o]

Main

MENM

Contral Bus

Interface Processor Block Diagram

Fig. 12,

65

Control ROM

-

(™ omm U cume TR I eus O

COHREG _ llllllll - ED SN TP ey CUR can WD wume SEm

Computer
Systea

NP

(P GED gue W ome s S g - e tINe NES qup WS g)
o)
0 o
1] m
0 8 -
] —— D e (- - e e e W e =)
] m -
(=7 = M
a © 3
(3] L
s
=

-""l"L r-"'llll'L

WP U e W GNP @IS CHD W e SHD SN - G W T Y o W W

—v N>

I/0 Supervisor Block Diagras

13.

Fig.

Fig.

Fig.

Code

converter—-—|

66

T

L R
{ |
| {
v { |
! | |
| l |
Address 1 Terminal l | Code {
| Controller }|-————-—| Conversion |
Code) Scanne¢r | | Table |
Coaverter i | | }
Data 1 i | |
L 5) ’ '
{ |
| |
L 3

14, Code Converter Block Diagram
| A |
| i
| |
r v { i
! { { i
i i i i
I/0 | Memory | | Read/Write |
Hemory=w—====| Contrel o1 Memory H
Access | Hardware | | Array i
i H H H
i i i i
[N : | I '
| |
| {
L -d

15. 1I/0 Memory Block Diagram

67
CONCLUSIONS

The proposed I/0 subsystem satisfies nearly all of the
criteria set forth in an early chapter of this paper.
Thirty-two terminals operating at 9600 baud produce a
maximum of 28,000 characters per second. This rate forces
the Channel Controller to'perform a character transfer every
35 microseconds and the Interface Processor to handle a 64
character buffer every 2 milliseconds. Although both of
these speeds are within the range of current tachnolsgy,
extra consideration needs to be devoted to the microprocessor
in the Channel Controller. PFurther informatioa on this
problem appears in the Appendix. The 35 microsecond minimum
is not typical since it is unlikely that all 32 teraminals
will be operating at 9600 baud for extended periods >f time.
If an average of 70 microseconds can be allottzd for each
character transfer, a siower but more easily implementei
Channel Controller results through the use of a siow=ar but
simplet microprocessor.

On-line editing facilities are provided with acceptable
response s
editing operations typically do not require high speed
exchanges between the system and the terminal. Thus, the

response times should not be degraded because of long £3iting

exaecution times.

68

By placinoy th2 terminal control functions in the
Terminal Contrewl ler, the rest 6f the I/0 subsystem is not
involved with * terminal operation and thus can be utilized for
other purposess; The detection and decoding facilities for
system command:ls alllov the user to control the system with
commands that ;e easily understood. The cdode conversion
problem is con'wexr*ed to an addressing operation on a
read-only memo:ey,

The capabioiki‘ty to interrupt an I/O operation, run a
supervisory prigram on the terminal, and then complete the
I/0 operation | powides a convenient means of communication
betveen the syyite:n and the terminal even during I/O tasks.

Prograas maj I= s‘tacked more than one deep on a terminal

o©

simply by haviirng ;2 second supervisory routine push down the
first one, etcy,

Simplicitzy i:s another feature of the subsystem. With
only registerss ex ternal to the microprocessors, the operation
of each procesziqQr is straightforward. The flexibility is
also enhanced bw this type of design. Since the control
sequences are (mpvided hy read-only control memories;
initializationm &s only a matter of setting up the standard
control words ind starting the I/0O subsystenm.

This prejliiat. is completed to the extent that the
subsystem is f¥imcitionally specified. Detailed design was not

inciuded in that s ffort because the microprocessor field is a

69

rapidly evolving techndl>gy and the newest products offer
magnitudes of improvement in performance over the
capabilities of the earlier types. Only recently have
devices become available that possess the performance
characteristics required for this I/0 subsystenm.

This I/0 subsystem as specified can operate with any
main computer system capable of supplying control information
and data to the subsystem and accepting data from the
subsystem. The code conversion tablaes and the control
mepories for the I/0 Supervisor and the Interface Processor
vill need to be modified to meet the specifications of the
main computer system, but the general subsystem will remain
unchanged.

Purther work in this area should include considsration
of the scheduling algorithms needed for optimux performance,
particularly with regard to editing commands and the
Interface Processor, Another important consideration is the
serviceability aspect. With many dedicated processors in the

subsystenm, complex diagndstic prograss aust

[~

& ussd to verify

[o]

(9]
(4 4

corre perforzance. Sincs tiaing plays an

[oo
[h 5

@portant role,

this testing must be done dynamically. As an axhaustive test
would be impossible, a coapromise procedure must be developeil
that vill run in 3 reasonable length of tide and still verify

that the subsystem operates as intended.

70

ACKNOWLEDGEMENTS

The author wishes to thank Professor T. A. Smay ani
Professor R. J. Zingg for their suggestions, encouragement,

and patience throughout this project.

1.

5.

6.

7.

71
LITERATURE CITED

Bell, C. Gordon and Gold, Michael M. "An Introduction
to the Structure of Time-shared Computers."”™ In Advances

in_Information Systems Sciepce, pp. 161-272. Edited by
Julius T. Tou. New York: Plenum Press, 1972.

Bull, G. M. and Packham, S. F. G, ZTime-sharing
Systems. London: McGraw Hill Book Company Limited,
1971.

Martin, James. Desidp._of Man-Computer Diglogues.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.

filler, Robert B. ™Response Time in Man-computer
Conversational Transactions." Proceedincs_of the 1968

Eall Joapk Computer _Copfercnce. Washington, D.C.:
Thompson Book Company, 1968.

Mills, David L. "Preprocessors in a Data Communication

Computer Environment.” pProceedings of ths ACHM Symposjua

on_Problems_in_the_Optimization of Data_Cammunjcations
Systeps. New York: Association for Computing

Machinery, 1969.

Smith, W. R.; Rice, Rex; Chesley, Gilman D.; et al.
"SYMBOL: A Large Experimental System Exploring Major
Hardware Replacement of Software." Proceedings_of_the
1371 _Spring _J2jnt CoEputer COR{gIspcs. Hontvals, N.J.:
APIPS Press, 197i.

Saltzer, J. H. and Ossanna, J. F. ®Remot2 Terminal
Character Stream Processing in MOLTICS." pRrogceedings_of

the 1970 Spring Jojpt cCompputer Conferenge. Montvale,
N.J.: AFIPS Press, 1970.

Saltzer, J. H. and Ossanna, J. F. "Technical and Human
Engiacering Preblens in Connecting Terminals ¢o
Time-sharing Systea.® pProceedinds of £hg 1370 fali
Joint Computer Conferepce. Montvale, N.J.: APIPS
Press, 1970.

McCarthy, John; Brian, Dow; Feldman, Gary; and Allen,
John. *"THOR=--A Display-based Time-sharing Systes.”
E£9£§§§19£5-2£_5h2-19§7.EBELRQ-QQ pL _Gompatar
conference. Washington, D.C.: Thompson Book Company,
1967.

10.

11.

12.

13.

14,

15,

19.

20.

21,

72

Kingslake, R. "TALK-An Interactive Systea for a Small

Computer." Software-:=Practice and Bxperjepce 1 (October
1971 : 391-1401.

Borman, P. R. and Grimm, E. H. III. ®"An Analysis of
Selected Interactive Systems." Interactive Computinge.
Berkshire, England: INFOTECH Information Limited, 1972,

Deutsch, L. Peter and Lampson, Butler W. "An Online

Editor." Communications._of the ACM 10 (December 1967):
793-9, 803.

Benjamin, Arthur J. "An Extensible Editor for a Small

Machine with Disk Storage." (Commupjcations_of the ACH
15 (August 1972): 792-7.

Bourne, S. R. "A Design for a Text Editor."

%%:%%1232:2:392192-331.Ezassisngg 1 (January 1971):

Fajman, Roger and Borgelt, John. "WYLBUR: An
Interactive Text Editing and Remote Job Entry Systee."
Copmupications_of the ACM 16 (May 1973): 314-22.
Jones, ¥ayne E. %The RKole of the Interface Processor
in the SYMBOL IIR Computer System.™ Special Report
NSP-OCA-GJ33097-CL7304, Cyclone Computer Laboratory.
Iova State Oniversity. Ames, Iowa, 1973.

®SIHABOL 2K Channei Controlier Flow Charts.™

Unpublished document. Fairchild Semiconductor Research
and Development Laboratory. Palo Alto, Calif., 1970.

"SYMBOL 2R Interface Processor Flow Charts."
unpublished document. Fairchild Semiconductor Research
and Development Laboratory. Palo Alto, Calif., 1970.

“SYHBOL 2R Job Control. Flow Charts.® Unpublished
document. Pairchild Semiconductor Besear:h an
Development Labc:a‘. *f. Palc alto, Calif., 19!0.
"SYMBOL 2R Job Controller Specification.” Unpublished
document. Fairchild Semiconductor Research and

Development Laboratory. Palo Alto, Calif., 1969.

“SYMBOL 2R Memory Specifications~--SP028E."™ Unpublished
document, Pairchild Semiconductor Research and
Development Laboratory. Palo Alto, Calif., 1970.

73

22. Wasserman, Anthony I. "The Design of *Idiot Proof!

Interactive Programs.” Proceedings_of _the 1973 National
computer conference.apd_Exposition. Montvalae, N.J.:
AFIPS Press, 1973,

23. Hayman, E. "Design Criteria for CRT Alphanumeric

Displays.™ 1363 International sSyaposius_pn_Map-Machine
Systems. New York: Institute of Electrical and
Electronics Eagineers, 1969.

24. MHMclaughlin, Richard A. "Alphanumeric Display Terminal
Survey." Datamatiop 19 (November 1973): 71-92.

25. MHNclaughlin, Richard A, "Fast Interactive Hardcopy
Terminals.* Datamation 19 (October 1973): 77-80.

26. Gotterer, Malcolm H. "On the Developmant of a
Supervisory Sequencing Routine.™ On_Line_Data
Processing. New York: Institute of Electrical ani
Electronics Engineers, 1963.

27. Ossanna, Joseph P, "Identifying Terminals in
Terminal-oriented Systems."™ Second_Symposiua_on
Problems in_the Optimization of Data Commgpicatiops
Sistems. GHew York: Association for Coaputing
Machinery, 1971.

74
RELATED LITERATURE

Barrett, E. E. "Memory Considerations for an On-line

Processor.® 0n_Line_Data Processing. New York:
Institute of Electrical and Electronics Engineers, 1963,

Black, W. Wayne. Ap_Intpoductiop to On-ljipe Computers.
London: Gordon and Breach, Science Publishers, Lti.,
1971,

Boies, S. J. "User Behavior on an Interactive Computer
System." IBM_Systeas Journal 13 (January 1974): 2-18,

Bratman, Harvey; Martin, Hiram G.; and Persteia, Ellen
Clark, "Program Composition and Bditing with aa On-line

Display.® PRroceedinds _of the 1968 Fall Joint Computer
conference. Washington, D.C.: Thompson Book Company,
1968.

Chu, W. W. "A Study of Asynchronous Time Division
Multiplexing for Tiame-sharing Computer Systems."

Broceedings of the 1369 Fall Joipt Computer_ cConference.
Montvale, N.J.: APIPS Press, 1969,

Fein, Louis. "Assessing Computing Systems." On_Ljine_pData
Processing. New York: 1Institute of Electrical anid
Electronics Engineers, 1963.

Pitzsim=ons, Thomas Fe. ®ASCII Extension api Expansion and
Their Impact on Data." gecopd _symposium_op_PBroblems in
the_ Optimization of Data Commynjicatjions Systems. New
York: Association for Computing Machinery, 1971.

Praser, A. G. "0On the Interface Between Computers and Data

Communication Systeas.™ Copmypications of the ACN 15
- (July 1972): 566-73.

Groner, Gabriel F, "Displavy Terminals Can Help Pecople to
Use Computers,® Ezﬁiiiiihﬁﬁ.ﬁi,iti-iﬁZE-EQEiQ&QL
compuier Conkarence _apnd Expogitiop. Montvale, N.J.:

APIPS Press, 1973.

Hansen, Wilfred J. "User Engineering Principles for

Interactive Systems." Procegedings of the 1371 Fall

Joink copputer _Conference. Montvale, N.J.: APIPS
Press, 1971.

Meadow, Charles T. Man-Hachipe_ Comaupication. New York:
John Wiley and Sons, Inc., 1970.

75

Parnas, Pavid L. "On the Use of Transition Diagrams in the
Design of a User Interface for an Interactive Computer
System." pProceedings of the 24th Hatiomal Conferepce.
Nev York, N.Y.: Association for Computing Machinery,
1969,

Rice, David E. and van Dam, Andries. "An Introduction to
Information Structures and Paging Considerations for
On~-line Text Editing Systems.®™ In jAdvances_in

Inforpation _Systems_Science, pp. 93-158, Edited by
Julius T. Tou. New York: Plenum Press, 1972.

Rosenblum, Stanley R. "Progress in Control Procedur2

Standardization.” Second Symposiup _op Problens_ip_the
Optimization of Data _Coppmunjications Systoms. New York:
Association for Computing Machimery, 1971.

Ross, H. McGregor. "The British Standard Data Code and How
to Exploit It.® cComputer Jourpal 13 (August 1970):
223-9,

Teperman, A. and Katzenelson, J. "A Pormat Editor."

%%i&!%ﬁﬁ..&iig.i ce_and_Experience 2 (July 1972):

Van Dam, Andries and Rice, David E. "On-~line Text Eliting:

A Survey." Compyting sSurveys 3 (September 1971):
93-114.

§iikes, fary Allen., #Scroll Editing: An On-line Algorithm
for Hanipulating Long Character Strings.® IEEE
Transactions_on _Computers 19 (November 1970): 1009-15,

Williams, Robin, "A Survey of Data Structures for Computer

Graphics Systeas."™ Computing Sypveys 3 (Macch 1971):
1-21.

76
APPENDIX

The performance characteristics of the I/J0 subsystem are
affected by the response speed of all of the processors
within the subsystem, Howvever, the most critical performanc2
specifications are in the Channel Controller. More than 100
instructibns can be executed for each character in the
Terminal Controllers and the Interface Processor without
degrading the respoase time of the system. In the Chamnel
Controller only about 10 instructions can be executed for
each character if all 32 terminals are operating at their
maximus rates., Maximum rates can occur ohly during standard
I/0 operations, i.e., without control commands. When control
commands appear in the data stream from a terminal, that
terminal's average data rate decreases since the user is
utilizing much of the time deciding which operation to
perform. The worst.case for the Channel Controller is during
the INPUT mode because checks must he performed on the high
order bits from the Terminal Controller to determine the
proper routing of characters, During the OUTPUT mode these
cheCks ars unnecessary because all characters are tramsferrel
to the Terminal Controller,

To justify the feasibility of a microprocessor~based
Channel Controller, a control sequence for an Intel 8080
microprocessor was constructed to perfora the worst case

operation described above. The control sequence is shown in

77

figure 16. The execution time for the sequence shown is 73

microseconds with a 2 microsecond instruction zycle time.

Execution
Time (us) Label Mnemonic Operand Description
5 TOP: ouT HOLD sWait for scanner to
s release HOLD line.
) IN GETCW ;Fetch control word from
;s I/0 Memory and load
s+ selected byte of CCWRD
;s into accumulator,
3.5 CPI COH sCheck INPUT flag (bit 8)
;s and CONTROL flag
;s (bit 7).
S JNC CONCN ;:;Branch to control routine
;s if bit 7 and bit 8 are
: not both 17,
5 IN CINFO :Fetch 4 high orier bits
;s from TC IOREG,
3.5 CPI 00H ;Check that the bits are
s all Q.
5 JNZ BEGCN j:Branch to control routine
: if any bits are not '0'.
5 IN FCHAR ;:;Fetch character fronm
s from TC IOREG.
3.5 CPI OEH :Check if end of recorad.
5 Jz EOR sBranch to shutdown
s routine if end of
;s record.
S ouT SCHAB :;Load CCDATA with
: character and traansfer
s to I/0 Nemory.
5 IN BUFAD ;Fetch buffer address
:+ from CCHRD.
2.5 INR A sIncrerent buffer address.
5 ouT STCRW ;Store buffer address in

: CCYURD and roturn contrsl
;s word to I/0 Memory.
5 JC BFE ;Branch to shutdown
s routina if buffer full.

5 .JHP TOP Return to top of progranm.

73us

Fig. 16, Channel Controller Standard INPUT Control Program

	1975
	A microprocessor-based input/output system for an interactive computer
	Wayne Elmer Jones
	Recommended Citation

	tmp.1412798464.pdf.QNQAA

